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Abstract 

 
The CALVUL approach to determining spatial vulnerability to ground water 
contamination has been previously described (Troiano et al., 1994; Troiano et al. 1997; 
Troiano et al., 1999).  CALVUL is an empirical approach because it attempts to identify 
similar geographic features amongst sections of land where pesticide residues have been 
found in ground water.  Two unique features of this approach are: 1) that no a priori 
determination is made regarding the pathway for pesticide movement to ground water; and 
2) that no relative scale of vulnerability is derived between land areas.  This report describes 
a revision in the clustering analysis of soil data.  The revision was conducted because the 
number of sections with pesticide detections had approximately doubled since the initial 
development of the CALVUL approach.  All of the sections used for this revision 
originated from DPR investigations which assured that sampled wells had met all aspects 
of a non-point source determination, especially with respect to visual inspection of well 
sites.  In addition, the soil data tables originally obtained from the National Resource 
Conservation Service (NRCS) had been updated.  The results of this analysis were very 
similar to the initial clustering analysis.  Variables that were important in discriminating 
clusters were permeability, shrink-swell potential, presence of a hardpan soil layer, and 
presence of an annual water table.  Soil texture in the initial analysis was reflected in 
values for the No 200 sieve.  In this revision, soil texture was indicated by the 
combination of permeability and shrink-swell potential.  Coarse soils were characterized 
by high permeability values and no shrink-swell potential whereas clayey soils were 
characterized by very low permeability values and high shrink-swell potential.  These 
observations were compared to the No200 sieve sizes to validate this observation.  
Although this revision indicated a greater number of clusters, there was better 
correspondence to general soil maps.  The addition of water table as a cluster variable 
provided greater separation primarily between clayey soils.  Presence of a water table 
could be an important variable in the development of mitigation measures and it is one of 
the observations that require further investiation.              
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Introduction 
 

The reasons for developing a model that identifies areas of land that are vulnerable to 
ground water contamination are:  

1. To increase the efficiency of well monitoring studies.  One mandated goal of well 
studies conducted by the Department of Pesticide Regulation (DPR) is to detect 
residues for active ingredients that have not yet been detected in California’s ground 
water (Connelly, 1986).  Identification of areas with a higher probability of detection 
should focus monitoring activities and expedite the detection of new residues. 

2. To delineate areas where mitigation measures should be implemented.  A strength of 
using a Geographical Information System (GIS) approach is the production of maps 
that identify areas of land with similar geographic features.  If geographic features 
can be related to higher probabilities of pesticide detection in well water, then 
mitigation measures could be implemented within delineated areas. 

3. To aid in the design and development of mitigation measures.  One further step 
taken in a GIS approach is to relate geographic features to the processes by which 
pesticide residues move from sites of application to ground water.  Practical 
significance can then be assigned to important geographic features because 
management practices could be tailored to the delineated areas.  Conversely, studies 
could be designed to determine processes of ground water contamination in areas 
where further study is needed to describe pathways for movement of residues into 
ground water.   

4. To fulfill programmatic mandates.  The U.S. EPA is developing a process for 
increased regulation of pesticides that have contaminated ground water.  States will 
be required to develop Pesticide Management Plans (PMPs) for pesticides of 
concern.  One prong of the plan is the development of statewide vulnerability 
assessments.  The California Vulnerability approach (CALVUL) is proposed to 
fulfill this requirement.     

 
The CALVUL approach to determining spatial vulnerability to ground water 
contamination has been previously described (Troiano et al., 1994; Troiano et al. 1997; 
Troiano et al., 1999).  CALVUL is an empirical approach because it attempts to identify 
similar geographic features amongst sections of land where pesticide residues have been 
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found in ground water.  Two unique features of this approach are: 1) that no a priori 
determination is made regarding the pathway for pesticide movement to ground water; and 
2) that no relative scale of vulnerability is derived between land areas.  Most other methods 
focus on delineating land areas where pesticides would leach to groundwater as a result 
of simple percolation of water from the land surface (National Research Council, 1993).  
Well sampling studies have been conducted to test spatial indices of vulnerability derived 
from models based solely on leaching potential (U.S. Environmental Protection Agency, 
1992; Balu and Paulsen, 1991; Holden et al., 1992, Kalinski et al., 1994; Roux et al., 
1991).  Pesticide residues in these studies were detected in wells located in areas 
identified as relatively invulnerable.  This result reinforced our observation that 
movement of pesticide residues to ground water occurred by multiple pathways, 
depending on soil, climatic and agronomic factors.  In California, pesticide residues had 
been detected in coarse-textured soil areas on the eastern side of Southern San Joaquin 
Valley and inland in Southern California (Figure 1.).  Leaching with simple percolation is 
a likely mechanism for pesticide movement to ground water in this area.  In contrast, 
residues have also been detected in areas where leaching was less likely such as in the 
fine-textured clay soils in the Sacramento Valley.  Climatic conditions in areas with 
detections also vary from relatively dry areas at less than 10 inches annual rainfall to 
greater than 60 inches of annual rainfall (Figure 1).   
 
In addition to leaching, other potential pathways include: movement of surface water into 
agricultural drainage wells (Braun and Hawkins, 1991; Roux et al., 1991); movement of 
water into Karst formations (Hallberg, 1989); or movement of water through cracks in 
clay soils (Graham et al., 1992).  Recently, measurement and modeling the movement of 
residues in macropore flow has gained more attention (Bergstrom et al., 1991; Chen et 
al., 1993).      
 
Owing to the uncertainty in determining the exact process of pesticide movement to 
ground water, we decided to use an empirical approach for the spatial identification of 
areas that are vulnerable to ground water contamination.  The first step in the CALVUL 
modeling approach was to identify sections of land where pesticide residues had been 
detected in ground water as a result of non-point source agricultural applications.  Data 
for contaminated wells were obtained from the Well Inventory Data Base that is 
maintained by DPR (Maes et al., 1992).  Sections of land were designated as known 
contaminated (KC) sections where residues had been detected and attributed to non-point 
source agricultural applications.  Sections are one-square-mile areas of land as described by 
the USGS Public Land Survey (Davis and Foote, 1966).  A section was chosen as the 
smallest geographical unit because it was also the smallest geographical reference for other 
databases supported at that time by the DPR such as pesticide use reporting and the Well 
Inventory Data Base.  
 
A non-point source determination for detection of a pesticide residue in well water is made 
when 3 conditions are fulfilled.  
1. Observation of well construction and pesticide storage and handling around a well rules 

out potential point sources,  
2. Non-point source use of the pesticide in the area near the well is indicated,  
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3. Residues are measured in more than 1 well within a 1 square-mile area surrounding the 
original detection.  

Although most non-point source determinations had been conducted by DPR staff, data 
reported by the California Department of Health Services (DHS) were from municipal 
sources, as compared to predominantly domestic, rural wells sampled in DPR studies.  Also, 
many DHS data are for pesticides no longer registered for use in California, i.e. DBCP, 1,2-
D, and EDB.  Many wells sampled by DHS were determined as non-point source without 
inspection because municipal wells have a high construction standard, use of many reported 
pesticides were previously suspended and consequently no longer regulated by DPR, and 
the integrity of the chemical analysis was high because of regulatory consequences.   
 
Description of Statistical Methodology 
Based on the smallest spatial scale as possible, statistical clustering methods were used to 
identify groups of KC sections using predominant climatic and edaphic features (Troiano 
et al., 1994).  The following discussion focuses on the use of soil variables in the cluster 
analysis.  A forward stepwise cluster selection procedure was developed as based on a 
suggestion by Fowlkes et al., (1988).  In the first step, a cluster analysis was conducted 
for each separate variable and the single best variable that formed clusters was identified.  
In the second step, the single best variable was tested in combination with the rest of the 
variables and the best clustering pair of variables identified.  Variables that were highly 
correlated, at a Pearson Correlation Coefficient ≥ 75%, with chosen variables were 
eliminated from subsequent steps because high correlation between variables tends to 
inflate statistical measures used to test the performance of the cluster analysis 
(Aldenderfer and Blashfield, 1984).  The stepwise process was repeated until there was 
no improvement in the statistical criteria used to assess the clustering solution.  Statistics 
used to assess cluster formation were the Cubic Clustering Criterion (CCC), the Pseudo-F 
and Pseudo-t2 statistics.  Comparison of the absolute value of the CCC both within and 
between steps was used as the primary indicator for improvement in cluster identification 
in subsequent steps (SAS Institute Inc., 1983; SAS Institute Inc., 1988).  
 
 The geographical significance of the statistical clusters was investigated by plotting the 
location of the sections that formed each cluster.  The clusters did indeed distinguish land 
areas, providing a statistical reflection of the soil distribution described in Figure 1.  In 
order to apply the results to other geographic areas, a classification algorithm was 
developed based on the results of the clustering procedure (Troiano et al., 1994).  The 
algorithm was used to classify other sections that lacked pesticide detection or well 
sampling data into one of the five KC soil clusters or, alternatively, into a not-classified 
category.  At first, the algorithm was based on a Principal Components Analysis (PCA) 
applied to the results of the clustering analysis.  The ability of the classification procedure 
to determine sections with higher probability of detection was tested in a well sampling 
study conducted in Fresno and Tulare Counties (Troiano et al., 1997).  Wells were 
sampled in sections of land that had not been previously sampled but that were identified 
as a member of one of the prevalent vulnerable soil clusters.  The rate of pesticide 
detection in those sections was 43%.  This rate was considered successful when 
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compared to results from other surveys that used a similar sampling design of one well 
per targeted area.  This result, however, was dependent on the method used to generate 
the profiles, whereby a classification algorithm based on Canonical Discriminate 
Analysis (CDA) appeared more accurate in determining cluster membership than the 
PCA based algorithm.  CDA analysis was suggested by Professor Dallas Johnson 
(personal communication, Statistics Department, University of Kansas) who is also an 
instructor for a mulitivariate statistics course given through the Institute for Professional 
Education, Arlington Virginia.  Since the PCA-based algorithm had been developed ad 
hoc, the CDA methodology was chosen because it was a statistically proven method.   
 
Incorporation of Additional Geographic Information 
Another feature of the CALVUL approach is that new information can be incorporated 
into the vulnerability analysis.  Statewide data for depth-to-groundwater (DGW) were not 
available when the project was first initiated, but data were available for Fresno and 
Tulare Counties.  When data from the well study were stratified according to DGW, the 
probability for detection was approximately 60% in sections with estimated DGW at 50 
feet or less, as compared to approximately 10% in sections with DGW estimates deeper 
than 50 feet  Subsequently, a DGW data base has been developed statewide, where 
available, and it has been included as a geographical data layer to indicate areas with a 
greater potential for detection of pesticide residue (Troiano et al., 1999). 
 
Testing an Application of the Vulnerability Classifications 
The utility of the CALVUL approach was further evaluated in a study designed to 
determine the presence of norflurazon residues in California’s ground water (Troiano et 
al., 1999).  One of the regulatory objectives of DPR’s ground water program is to conduct 
retrospective well sampling studies to determine the presence of new active ingredients in 
California’s ground water.  Norflurazon was chosen as a candidate active ingredient 
because it is a pre-emergence herbicide that is a potential substitute for simazine and 
bromacil.  Simazine and bromacil are both commonly detected in well studies, especially 
in sampling conducted in Fresno and Tulare Counties.  Norflurazon is a pre-emergence 
herbicide that exhibits physical-chemical properties similar to simazine and bromacil.  
Norflurazon is persistent in soil with an aerobic soil half-life of approximately 90 days, is 
not strongly sorbed to soil with a Koc of approximately 600, and is soluble in water at 28 
ppm.  These values are within the range in values for physical-chemical properties of 
other known ground water contaminants.  The ranges are 8-1,000 days for aerobic soil-
half life, 6-7,100 for Koc, and 0.6-780,000 ppb for water solubility (Johnson, 1991).   
 
In the retrospective well study for norflurazon, residues were detected in 8 of 32 wells 
sampled in Fresno County.  This result was significant because residues had not been 
detected in ground water studies for 18 other pesticides conducted under a protocol that 
included toxicity in prioritizing candidate pesticides.  The success in detection of 
norflurazon was attributed to; 1) use of the new protocol placing greater emphasis on 
mobility and persistence of the candidate pesticide, and 2) use of the CALVUL model 
results to focus sampling in areas with a higher probability of pesticide movement to 
ground water.      
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Revision of the Soil Classification and Further Application 
The DPR is proposing to implement the CALVUL model through regulations that will 
increase the preventative aspects of our program.  This report describes: 
1. An update of the clustering and profiling analyses for the soil variable portion of 

CALVUL;  
2. Comparison of CALVUL results to digitized soil data for Tulare County;    
3. The application of the CALVUL model results statewide.  The model will be used to 

determine where permits will be required for agricultural use of pesticides listed as 
6800 (a) active ingredients according to the Pesticide Contamination Prevention Act 
(PCPA) (Connelly, 1996).  Pesticide active ingredients listed in section 6800 (a) of 
the Department of Food and Agriculture code are regulated because they have been 
detected in ground water due to non-point source agricultural use. 

  
The revision in the clustering analysis has been conducted because the number of 
sections with pesticide detection has increased in the Well Inventory Data Base and the 
soil data tables originally obtained from the National Resource Conservation Service 
(NRCS) have been updated.  Also, all of the sections used for this analysis originate from 
DPR investigations which assures that sampled wells have met all aspects of a non-point 
source determination, especially with respect to visual inspection of well sites.      
 
 

Materials and Methods 
 

Determination of Known Contaminated Sections 
Data for pesticide detections in well water were obtained from the Well Inventory Data 
Base maintained since 1985 by the California Department of Pesticide Regulation (DPR) 
(Maes et al., 1992).  The Pesticide Prevention Contamination Act (Connelly, 1986) 
requires the DPR to determine whether or not reported detections are due to legal 
agricultural use.  Subsequently, a Known Contaminate (KC) section was defined as a 
section where pesticide residues had been found in well water due to legal agricultural 
use (Appendix A, SQL program #1 page A-1).  The pesticide active ingredients and 
breakdown products detected in well water in KC sections are listed in Table 1. DBCP 
detections, though numerous, were omitted from the study.  Use of DBCP was banned in 
1979.  Since then, a large number of detections in well water have been reported, 
primarily from sampling conducted by the California Department of Health Services 
(Brown et al., 1986).  Detection could have resulted from movement of contaminated 
ground water between sections during the time span between cessation of use and 
sampling of well water.  Although this problem may exist with other detected pesticides, 
DBCP represented an extreme in terms of spreading in ground water aquifers due to the 
widespread high rates of application, high mobility of volatile fumigants such as DBCP, 
and the extraordinarily long half-life of DBCP, which is estimated at greater than 100 
years (Burlinson et al., 1982).  The less extensive, lower rates of application and shorter 
half-lives for the other pesticide ground water contaminants provide some assurance that 
detection of these pesticides are more reflective of local use.   
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Table 1. Active ingredients detected in California well sampling investigations and determined 
to be derived from non-point source applications.

Number of Sections
Common Name Action with Detection

Atrazine Pre-emergence Herbicide 59

Bentazon Pre-emergence Herbicide 48

Bromacil Pre-emergence Herbicide 132

Deethylatrazine Atrazine Breakdown Product 16

Deisopropylatrazine/deethylsimazine Atrazine and Simazine Common Breakdown Product 84

Didealkylated Triazine Atrazine and Simazine Common Breakdown Product 5

Diuron Pre-emergence Herbicide 220

Norfluazon Pre-emergence Herbicide 3

Prometon Pre-emergence Herbicide 20

Simazine Pre-emergence Herbicide 314

2,3,5,6-tetrachloroterephthalic Acid Breakdown Product of Chlorthal-Dimethyl 15
which is a Pre-emergence Herbicide
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Soil Data 
Data for physical and chemical properties of soil were obtained at the level of soil 
mapping unit as delineated in the county soil surveys of the Natural Resources 
Conservation Service (formerly the USDA Soil Conservation Service) (Soil Conservation 
Service, 1983; Soil Survey Staff, 1997).  The type of mapping unit used in this study was 
primarily surface texture phases of consociations of soil series.  Since digital data for soil 
mapping units were not available, a data base was developed that catalogued all soil 
mapping units by Township/Range/Section (T/R/S) for all published soil surveys.  This 
data set was named the California State Mapping Unit Identification (CSMUID) and it 
was developed through contract with Tom Rice at Cal Poly, San Luis Obispo initiated by 
Bob Teso (personal communication, formerly with DPR at the University of Riverside, 
Riverside, CA).  The data set was augmented with preliminary data from soil surveys not 
yet published such as Glenn County, the Western Part of Tulare County, and Kern 
County.  Soil mapping units in the augmented CSMUID data set were matched to the KC 
sections extracted from the Well Inventory Data Base.  After soil mapping units were 
assigned to KC sections, data for the physical and chemical properties for each mapping 
unit were extracted from the National Map Unit Interpretations Record (MUIR) Database 
provided by the USDA-NRCS Soil Survey Division.  The matching of CSMUID data to 
KC sections and assignment of MUIR data was executed in a single SQL program 
(Appendix A, SQL program #2 page A-2).  The MUIR data was contained in two 
databases, one named the COMP for composition and the other named LAYER. These 
databases contain estimates for chemical, textural, and observational data.  Data in the 
COMP table are related to the entire soil column whereas data in the LAYER table are 
related by soil layer down to the 1.5 meter depth for each soil mapping unit.  Both are 
available through the Internet at http://www.statlab.iastate.edu/cgi-bin/dmuir.cgi and they 
were downloaded on April 22, 1999.   
 
One other step that was included in this revised analysis was to weight the values 
according to the percent composition of MUID soil components.  This suggestion was 
made during discussion of the previous results with Dr. Minghua Zhang, UC Davis.  
Some soils are a complex with a percentage of each specified in the COMP table.  For 
example, the Cometa-San Joaquin sandy loam MUID (CzcB) is composed of 60% 
Cometa series and 35% San Joaquin series with the remaining 5% a mixture of non-
defined soils.  Data for this MUID was weighted according to the percentages indicated 
for the Cometa and San Joaquin soil series.   
 
 
Statistical Analysis 
 
Data Preparation 
Many of the variables are descriptive in nature such as classification for shrink-swell 
potential as low, moderate, or high.  These ordinal variables in the MUIR database were 
transformed to a numeric scale (Appendix A, SAS program #3a page A-7 and program 
3b page A-10).  For numeric variables, high and low values were reported for each 
variable so mid-points were calculated for this study.  In the initial analysis reported in 
1994 (Troiano et al., 1994), descriptive variables for soil texture in the MUIR database 

http://www.statlab.iastate.edu/cgi-bin/dmuir.cgi
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were transformed to a numeric scale by assigning values for sand and clay from the 
centroid of corresponding textural classes in the Soil Triangle (Soil Conservation Service, 
1975).  Owing to the high correlation between the derived texture variables and data for 
sieve sizes, derived texture data from descriptive variables were considered highly 
redundant and they were not included in this analysis (see Table V in Troiano et al., 
1994). 
 
Variables were derived to partition the soil layer data between surface and subsurface 
conditions.  For the surface soil layer, variables were calculated to represent a sectional 
value by averaging data from the first soil layer over all soil mapping units within a 
section.  The depth of the soil layer is dependent on the soil horizon and is not consistent 
for all soil MUIDs.  For the subsurface soil layer, variables representative of a section 
were derived by averaging data for all soil layers below the first layer within a mapping 
unit with each value weighted according to the depth of each layer.  The weighted 
averages were then averaged across all mapping units within the section.  The number of 
sections with sufficient data for use in the statistical analysis was 465.  Although there 
were 519 KC sections, contemporary soil survey data was lacking for some KC sections 
in Del Norte, Humbolt, Los Angeles, Orange, and San Bernardino Counties.  
 
One other rule used in the analysis was the exclusion of mapping units with slope greater 
than or equal to 15% for the high value (Troiano et al., 1994).  The exclusion of these 
data was based on a previous observation that slopes with these values did not represent 
agricultural areas where contamination had occurred.  Within a section, agricultural 
cropping patterns that could contribute to ground water contamination abutted these 
sloped areas.  Averaging the data for these two conditions would produce estimates that 
were not representative of the soil used for agricultural purposes.  
 
As a measure of the accuracy of the model estimates, a comparison was made between 
the CALVUL estimates and digitized soil data for Central Tulare County (Soil Survey 
#660).  This level of data is denoted as the SSURGO set of data, which indicates that the 
base maps for individual soil surveys have been digitized.  Only a few have been 
digitized.  The data were downloaded from the internet address at 
http://www.ftw.nrcs.usda.gov/stssaid.html and processed using ArcView 3.1 
Geographical Information Systems software Environmental Systems Research System 
(ESRI, Redlands, CA).  Two themes were created where a Public Land Survey Section 
(T/R/S) theme was presented over the NRCS Soil Series CA660 (Central Tulare County) 
theme.  Both themes were in Albers projection units. The Tabulate Area Function in the 
ESRI Spatial Analyst extension version 1.1 software was used to perform a cross 
tabulation of the area between the NRCS digitized soil layer and the T/R/S section layer 
theme.  These areas were exported in DBF 4.0 format and then imported into Microsoft 
Excel 5.0.  A summary table was derived that contained the percentage of each soil 
MUID found within each T/R/S in the Central Tulare County soil survey. 
 
 
 
 

http://www.ftw.nrcs.usda.gov/stssaid.html
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Cluster Analysis 
The forward stepwise cluster method has been previously described (Troiano et al., 
1994).  It was based on a forward selection technique suggested by Fowlkes et al. (1988).  
Prior to analysis, variables were standardized to mean 0 and standard deviation 1 to 
remove effects of scale.  In the first step, the single best clustering variable was identified 
using statistical criteria.  In the second step, the single best variable was tested in 
combination with the rest of the variables and the best clustering pair of variables 
identified.  As previously described, variables that were highly correlated with chosen 
variables were not included in subsequent steps because correlation between variables 
tends to inflate statistical measures used to test the performance of the cluster analysis 
(Aldenderfer and Blashfield, 1984).  The number of KC sections was large enough to 
produce statistical significance at low values of the correlation coefficient, so variables 
with Pearson correlation coefficients ≥ 0.75 were considered highly correlated (Appendix 
A, SAS program #4 page A-13).  The stepwise process was repeated until there was no or 
only marginal improvement in the statistical criteria used to assess the clustering solution 
(Appendix A, SAS programs #5 page A-14).  The data used for the analysis is reported in 
Appendix A page A-45.   
 
Three statistical measures were used to determine the number of clusters; the Cubic 
Clustering Criterion (CCC), the Pseudo-F and Pseudo-t2 statistics (SAS Institute Inc., 
1983; SAS Institute Inc., 1988).  As suggested in the SAS publication, CCC values above 
3.0 were considered indicative of cluster formation in step 1.  An increase in the CCC 
value was used as the indication for cluster building in subsequent steps.  Peaks in the 
Psuedo-F and valleys in the Psuedo-t2 statistics are indicative of cluster formation.  Two 
clustering methods were used: Average linkage and Centroid.  In the Average method, 
distance between two clusters is computed as the average distance between pairs of 
observations, one in each cluster.  In the Centroid method, distance between two clusters 
is computed as the squared Euclidean distance between their centroids.  The appropriate 
number of clusters at each step was determined as the best level of agreement between 
statistical criteria and between methods. 
 
Profiling Algorithm 
The classification method was based on Canonical Discriminant Analysis (CDA) and it 
was described in Troiano et al., (1997).  A CDA analysis was conducted on the data 
output from the final clustering step.  This data set contained the T/R/S identifier, the 
cluster identification number assigned to each section, and the corresponding raw data for 
each of the variables identified in the final step.  In the CDA analysis, the variable 
identifying the cluster was designated as the class variable and the soil variables were 
designated as the explanatory variables (Appendix A, SAS program #6a page A-62).  The 
CDA produces Canonical Variates (CVs) that identify the location of the clusters in 
canonical space (SAS Institute Inc., 1988).  
 
The classification algorithm was defined as the CV coefficients produced from the CDA 
that can be applied to raw data (Appendix A, SAS program #6b page A-63, SAS program 
#6c page A-64, and SAS program #6d page A-66).  A section was classified as a member 
or non-member of a soil cluster by calculating the Euclidean distance between the 
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canonical variate coordinates developed for each section and the centroid mean of each 
KC soil cluster.  This value was compared to the Euclidean distance calculated for the 
radius of the 95% population tolerance interval constructed around the centroid of each 
cluster (personal communication, Professor Dallas Johnson, Department of Statistics, 
Kansas State University). For 2 CVs, the interval was defined as a circular population 
tolerance interval that was constructed around the centroid means for each of the KC soil 
clusters.  The radius was determined as √(χ2 0.05/n) with χ2 = the number of CVs and n=1.  
For 2 CVs the value was √(5.99/1)=2.447.  In the previous report (Troiano et al., 1997), 2 
CVs were adequate.  In this revision, 3 CVs were also tested.  For 3 CVs, spherical 
population tolerance intervals were constructed around each cluster's centroid with the 
radius determined as √(7.81/1)=2.795.  In the case of multiple cluster membership, the 
section was considered a member of the cluster with the smallest Euclidean distance to 
the cluster centroid.  This procedure retained the possibility of producing not-classified 
sections because the coordinates for a candidate section could fall outside the canonical 
space defined all of the cluster centroids and their tolerance intervals.  An error rate was 
determined by comparing cluster assignments between a reclassification of the original 
KC data according to the profile algorithm and the cluster analysis.   
 

 
Results and Discussion 

 
Stepwise Clustering of Soil Variables 
The acronyms and brief description of soil variables used in the statistical analyses are 
reported in Table 2 (Soil Survey Staff, 1997).  Results for the correlation analysis were 
very similar to the previous study (Table 3 in this report compared to Table 2 in Troiano 
et al., 1994).  There was a group of variables derived from the LAYER table that were 
highly correlated (R2 ≥ 0.75) and where soil texture measurements had been conducted 
on soil material less than 75 mm in diameter.  These variables were sieve sizes 40 and 
200, clay content, shrink-swell potential, permeability, bulk density, and cation exchange 
capacity.  In most cases there was a high correlation between the values derived for the 
surface and subsurface variables.  It is interesting that available water holding capacity of 
the surface layer (AWC1) appeared correlated with some of the texture variables whereas 
the subsurface values (AWC2) were relatively uncorrelated with all other variables.  
Variables for coarser sieve sizes, No 4 and 10, were not correlated with the texture 
variables but they were related to one another.  The remaining variables, except for 
hydrologic group, were not highly correlated.  These variables had been primarily derived 
from the Composition (COMP) table with the exception of the indicators for rock 
fragments, organic matter content, and soil salinity.  Lastly, data for hydrologic group 
(HYD) was highly correlated with some of the texture variables. 
 
The distribution of a few of the variables indicated that they might not be useful in the 
cluster analysis (Appendix B1, Univariate Analysis page B-1).  For example, the 
distribution of percent rock fragments in soil was very skewed, as indicated by the 
Inch101 variable, which had only 12 observations greater than zero and with the positive 
values relatively evenly distributed from each other.  Variables with problematic 
distributions were Inch31, Inch32, Inch101, Inch102, and Bedrock. 
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Table 2. Description of soil variables used in cluster and profiling analyses with subfixes 1 and 2 referring to surface and subsurface soil layers, 
respectively.      
 
Variable Acronym       Description of Variable 
 
Derived from Layer Table 
Awc1,  Awc2 Available water holding capacity of soil  
BD1, BD2 Bulk density of soil less than 2mm in diameter  
Clay1,  Clay2 Measured clay content in soil  
CEC1, CEC2 Cation exchange capacity of soil 
Inch101, Inch102 Weight percent of whole soil greater than 250 mm (10 inches) . 
Inch31, Inch32 Weight percent of whole soil greater than 75 mm (3 inches) and less than 250 mm (10 inches) 
 No41,  No42 Percent by weight of soil material smaller than 75 mm in diameter that passes a no. 4 (75 mm) sieve 
No101, No102 Percent by weight of soil material smaller than 75 mm in diameter that passes a no. 10 (2 mm) sieve 
No401, No402 Percent by weight of soil material smaller than 75 mm in diameter that passes a no. 40 (.425 mm) sieve 
No2001, No2002 Percent by weight of soil material smaller than 75  mm in diameter that passes a no. 200 (0.074 mm) sieve 
Om1, Om2 Percentage of organic matter in soil 
Perm1,  Perm2 Permeability measurements 
Salin1, Salin2 Measure of soil salinity 
Shrink1, Shrink2 Shrink-swell potential of soil with ‘low’, ‘moderate’, and ‘high’ categories coded as 0,1, and 2, respectively 
 
Derived from Composition Table 
Bedrock Indicator for bedrock material within 1.5 m depth with ‘HARD' or 'SOFT' =1 otherwise 0 
Drain Drainage class identifies the natural drainage condition of soil coded with 

'VP'=0;‘P'=1;'SP'=2;'MW'=3;'W,MW'=3.5;'W'=4;'W,SE'=4.5;’SE'=5;'SE,E'=5.5;'E'=6;'P,E'=3.5; 
Flood Flooding indicates the temporary covering of the soil surface by flowing water with ‘NONE' and 'RARE'=0 and 'COMM', ’FREQ', 
  and 'OCCAS'=1 
Hyd Hydrologic group identifying similar runoff potential under similar storm and cover conditions with  groups ‘A’ and ‘B’=0 and  
 groups ‘C’, ‘D’, and ‘C/D’=1 
Pan Indicator for cemented hardpan with none=0 and soil with a hardpan=1 
Slope Surface slope of soil  
Wattab Indicator for presence of a water table above 1.5 m and if 'APPAR' or 'PERCH' then wattab=1 otherwise wattab=0 
Watsoil Indicator for hydric soil condition and if  hydric='Y' then watsoil=1 otherwise watsoil=0 
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Table 3. Correlation matrix for soil variables.  At n=465, a Pearson correlation coeffiecient of 0.13 is significant at p=0.01 so coefficients of 0.75 or greater 
are underlined to illustrate trends in data.  Acronyms are defined in Table I.

CORRELATED WITH
 CORRELATED WITH SOIL TEXTURE SOIL COARSENESS NOT HIGHLY CORRELATED

  -------------------------------------------------------------------------------------------------------------------------- Pearson Correlation Coefficient (n=465     ----------------------------------------------------------------------------------------------------

Clay1 1 0.94 0.87 0.94 -0.78 -0.92 0.97 0.94 0.89 0.83 0.94 -0.77 -0.83 0.94 0.66 0.44 0.05 0.16 0.07 0.17 -0.10 0.19 -0.09 -0.03 0.56 0.22 0.41 0.51 0.13 0.03 0.38 0.17 -0.58 0.72 -0.02 0.01
No2001 1.00 0.95 0.85 -0.84 -0.90 0.93 0.90 0.94 0.86 0.92 -0.80 -0.81 0.93 0.79 0.56 0.13 0.24 0.07 0.16 -0.10 0.02 -0.09 -0.12 0.57 0.25 0.43 0.53 0.07 0.08 0.44 0.18 -0.67 0.75 0.03 -0.11
No401 1.00 0.77 -0.79 -0.83 0.86 0.83 0.88 0.86 0.87 -0.77 -0.74 0.87 0.80 0.54 0.27 0.37 0.15 0.23 -0.14 -0.08 -0.12 -0.24 0.57 0.32 0.40 0.50 0.06 0.15 0.42 0.19 -0.68 0.77 0.04 -0.14
Shrink1 1.00 -0.57 -0.85 0.94 0.88 0.84 0.79 0.87 -0.60 -0.78 0.90 0.51 0.37 0.10 0.24 0.16 0.27 -0.08 0.20 -0.08 -0.01 0.48 0.12 0.41 0.52 0.14 -0.16 0.43 0.19 -0.47 0.58 0.04 0.02
Perm1 1.00 0.82 -0.73 -0.77 -0.74 -0.65 -0.76 0.93 0.71 -0.75 -0.83 -0.45 0.03 0.03 0.13 0.10 0.13 -0.06 0.10 0.10 -0.49 -0.33 -0.26 -0.35 -0.09 -0.37 -0.17 -0.04 0.61 -0.76 0.11 0.05
BD1 1.00 -0.90 -0.86 -0.83 -0.74 -0.88 0.78 0.86 -0.87 -0.70 -0.45 0.00 -0.10 0.03 -0.06 0.11 -0.18 0.07 0.02 -0.54 -0.25 -0.42 -0.51 -0.17 -0.07 -0.35 -0.17 0.57 -0.71 0.00 0.02
CEC1 1.00 0.93 0.89 0.84 0.93 -0.74 -0.79 0.96 0.63 0.43 0.07 0.19 0.12 0.22 -0.09 0.19 -0.08 -0.01 0.60 0.23 0.43 0.54 0.11 -0.04 0.46 0.21 -0.61 0.70 0.04 -0.01
Clay2 1.00 0.93 0.89 0.95 -0.81 -0.80 0.97 0.64 0.43 0.04 0.14 0.14 0.23 -0.11 0.17 -0.10 -0.02 0.53 0.19 0.33 0.45 0.14 -0.06 0.41 0.17 -0.56 0.72 0.04 0.06
No2002 1.00 0.93 0.92 -0.76 -0.75 0.93 0.68 0.62 0.15 0.29 0.21 0.31 -0.11 0.04 -0.09 -0.12 0.51 0.15 0.40 0.52 0.05 -0.10 0.50 0.20 -0.63 0.67 0.09 -0.12
No402 1.00 0.86 -0.73 -0.66 0.88 0.61 0.55 0.29 0.42 0.43 0.53 -0.16 0.00 -0.15 -0.24 0.53 0.22 0.35 0.47 0.06 -0.13 0.49 0.25 -0.59 0.64 0.09 -0.07
Shrink2 1.00 -0.77 -0.80 0.96 0.67 0.46 0.05 0.16 0.06 0.15 -0.13 0.14 -0.11 -0.04 0.50 0.20 0.36 0.46 0.14 0.03 0.38 0.13 -0.58 0.79 0.05 0.02
Perm2 1.00 0.69 -0.77 -0.77 -0.43 0.03 0.00 0.03 -0.02 0.15 -0.08 0.13 0.09 -0.46 -0.32 -0.27 -0.35 -0.11 -0.27 -0.21 -0.08 0.58 -0.74 0.07 0.00
BD2 1.00 -0.79 -0.61 -0.44 -0.01 -0.09 0.11 0.01 0.11 -0.14 0.08 0.05 -0.41 -0.21 -0.40 -0.47 -0.12 -0.09 -0.28 -0.09 0.50 -0.64 0.01 0.02
CEC2 1.00 0.65 0.44 0.09 0.21 0.14 0.24 -0.11 0.14 -0.10 -0.05 0.52 0.21 0.38 0.49 0.10 -0.02 0.44 0.16 -0.60 0.75 0.06 -0.03
AWC1 1.00 0.57 0.04 0.06 -0.10 -0.07 -0.09 -0.04 -0.06 -0.13 0.48 0.33 0.06 0.14 0.04 0.31 0.11 -0.09 -0.47 0.65 -0.07 -0.13
AWC2 1.00 0.08 0.19 0.05 0.13 -0.07 -0.06 -0.03 -0.09 0.42 0.28 0.21 0.28 -0.08 -0.16 0.28 0.05 -0.42 0.29 0.00 -0.20

No41 1.00 0.92 0.75 0.70 -0.20 -0.50 -0.22 -0.65 0.02 -0.03 0.19 0.21 -0.01 0.09 0.14 0.13 -0.26 0.07 -0.01 -0.19
No101 1.00 0.75 0.78 -0.19 -0.49 -0.22 -0.60 0.06 -0.08 0.31 0.34 -0.01 -0.11 0.28 0.22 -0.31 0.06 0.04 -0.25
No42 1.00 0.97 -0.18 -0.27 -0.21 -0.53 0.12 0.00 0.04 0.12 -0.01 -0.24 0.20 0.20 -0.11 -0.05 0.06 -0.04
No102 1.00 -0.19 -0.23 -0.21 -0.49 0.15 -0.02 0.11 0.20 -0.01 -0.35 0.28 0.25 -0.16 -0.03 0.08 -0.04

Inch101 1.00 0.23 0.86 0.40 0.06 -0.08 -0.06 -0.07 -0.05 -0.13 0.09 0.20 0.04 -0.19 0.24 -0.02
Inch31 1.00 0.21 0.65 0.12 0.04 -0.12 -0.11 0.16 -0.14 -0.06 -0.02 0.13 0.05 0.05 0.28
Inch102 1.00 0.35 0.12 -0.08 -0.07 -0.07 -0.02 -0.15 0.06 0.17 0.05 -0.19 0.22 0.05
Inch32 1.00 0.08 -0.08 -0.08 -0.11 0.12 -0.23 0.00 0.04 0.19 -0.14 0.16 0.22
OM1 1.00 0.51 0.17 0.27 0.04 -0.14 0.33 0.27 -0.48 0.33 0.09 0.07
OM2 1.00 -0.06 0.00 -0.05 0.18 -0.05 -0.10 -0.14 0.27 -0.04 0.01
Salin1 1.00 0.94 -0.07 -0.07 0.51 0.47 -0.60 0.25 0.07 -0.23
Salin2 1.00 -0.08 -0.11 0.58 0.45 -0.64 0.32 0.09 -0.22
Bedrock 1.00 -0.08 -0.08 -0.01 0.05 0.15 -0.04 0.54
Pan 1.00 -0.30 -0.29 -0.18 0.43 -0.28 -0.12
Wattab 1.00 0.62 -0.69 0.29 0.50 -0.21
Watsoil 1.00 -0.49 0.09 0.42 -0.10
Drain 1.00 -0.62 -0.20 0.26
Hyd 1.00 -0.05 0.03
Flood 1.00 -0.06
Slope 1.00
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Step 1 
All variables were entered individually in the first step to test for each variable's 
potential to form clusters (Appendix B2, Cluster Analysis, page B-39).  Table 4 
contains the variables with CCC values over 3 and indicates the level of agreement 
between the Average and Centroid methods.  Some variables formed a relatively high 
number of clusters but many of the clusters contained one to a few members.  
Bedrock for example formed seven clusters but four of the clusters had 1, 2, 4, and 6, 
members.  Although this stratification could contain useful information, many 
clusters with low membership would not have been useful in the subsequent CDA 
classification procedure.  The Shrink1 variable, which formed 3 clusters, was chosen 
as the variable to include in the second step because of the consistency in results 
between clustering methods and because the number of clusters and CCC value had 
potential for growth.  
 
Step 2 
In step 2, Wattab was chosen as the next variable to include due to close agreement 
between the two cluster methods and again because the number of clusters and CCC 
value could be enlarged in the next step (Appendix B page B-75).  The addition of 
WATTAB did not increase the number of clusters, but it did provide further 
discrimination between fine-textured clusters (Table 5, Step 1 vs Step 2).  The 
variable Inch101 did have an exact match between statistics but, again, clusters 
contained very few members and would not have been useful in the CDA 
classification procedure.  The problem with few members was consistent throughout 
the analysis for the inch10, inch3 and bedrock variables so they were not considered 
in subsequent steps.  
 
Step 3 
For step 3, both clustering methods indicated that Perm1 was the next significant 
variable to include (Appendix B page B-101).  When compared to the mean values 
for the clusters identified in step 2, Perm1 was broadened the texture clusters with 
respect to coarse soil conditions (Table 5).  Data in Table 5 are ordered according to 
increasing values of the No2001 variable.  The mean for the No2001 variable is 
intended as an aid in interpretation of the combination of permeability and shrink-
swell data as related to soil texture.  The No2001 variable was a clustering variable in 
the original analysis.  It was reflective of ranges in soil texture with low percentages 
corresponding to coarse-textured, sandy soil and higher percentages to finer-textured, 
clay soil (Troiano et al., 1994). A plot of the No2001 and Perm1 variables is 
curvilinear in nature and indicates greater discrimination between coarse soils as 
permeability increases (Figure 2a).  In contrast, the plot between No2001 and Shrink1 
indicates a censored relationship where most of the coarse-textured soils between 20 
and 40% for No2001 have shrink-swell values of zero and above 40% the shrink-
swell values are positively related to No2001 values (Figure 2b).  Plots based on 
measures of clay content (Clay1) indicate the same result (Figures 3a and 3b).  
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Table 4.  Significant stepwise results for clustering of soil variables.

Step, and Level of
Statistical Agreement Number of
and Variable(s) Entered CCC Vaue Clusters Comments

Step 1. Each variable tested.
I. Exact Agreement between Average and Centroid Method

Shrink1 3.72 3
Pan 9.85 6 Psuedo-F not at peak value
Watttab 9.62 7
Om2 3.13 2 Psuedo-T statistic not exact match
Bedrock 6.65 7 Many small clusters

II. Close Agreement at Same Cluster Number
Hyd Average-3.94 6 Psuedo-t not at Valley

Centroid-4.22 6
III. Close Agreement

Flood Average-6.31 7
Centroid-6.22 8

Step 2. Shrink1 included in all tests
I. Exact Agreement between Average and Centroid Method

inch101 15.25 5 Only small clusters identified
II. Close Agreement at Same Cluster Number

Wattab Average-3.62 3
Centroid-3.92 3

Perm1 Average-7.12 12
Centroid-9.99 12

Bedrock Average-6.95 12 Many small clusters
Centroid-5.96 12

Hyd Average-4.58 13
Centroid-2.87 13

III. Close Agreement
Perm2 Average-6.97 3

Centroid-8.88 4
Step 3 Shrink1 and Wattab included in all tests

I. Exact Agreement between Average and Centroid Method - No exact match
II. Close Agreement at Same Cluster Number

Perm1 Average-4.09 7 Agreement also at 15 clusters
Centroid-3.62 7

Perm2 Average-4.43 13
Centroid-4.68 13

III. Close Agreement
OM2 Average-4.31 17 Peak in Psuedo-F statistic at 16

Centrois-4.55 16
Bedrock Average-7.75 17

Centroid-3.40 16
Step 4 Shrink1, Wattab, and Perm1 included 

I. Exact Agreement between Average and Centroid Method - No exact match
II. Close Agreement at Same Cluster Number

Pan Average-8.17 19
Centroid-3.08 19

Flood Average-5.66 19 Mimicked Wattab data with only
Centroid-3.10 19 1 observation forming a unique cluster

Watsoil Average-6.29 14 Mimicked Wattb data with only 
Centroid-3.05 14 3 sections forming a unique cluster

OM2 Average-6.20 10 Psuedo-F not a Peak 
Centroid-5.10 10 Psuedo-F not a Peak 
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Table 5. Statistics for results of clustering analysis at each step.

Step, Cluster Method Number of No2001 Shrink1 Wattab Perm1 Pan
and Cluster Number Members Mean SD Mean SD Mean SD Mean SD Mean SD

Step 1, Average Method
3 324 44 10 0.06 0.12
1 84 64 11 0.74 0.19
2 57 80 7 1.41 0.22

Step 1, Centroid Method
3 324 44 10 0.06 0.12
1 84 64 11 0.74 0.19
2 57 80 7 1.41 0.22

Step 2, Average Method
2 370 46 10 0.13 0.22 0.05 0.11
1 31 79 10 1.05 0.19 0.87 0.12
3 64 76 8 1.26 0.12 0.16 0.20

Step 2, Centroid Method
2 370 46 10 0.13 0.22 0.05 0.11
1 31 79 10 1.05 0.19 0.87 0.12
3 64 76 8 1.26 0.12 0.16 0.20

Step 3, Average Method
6 1 17 - 0.00 - 0.00 - 13.0 -
7 1 26 - 0.00 - 0.73 - 10.4 -
2 87 33 4 0.01 0.04 0.07 0.08 7.8 1.4
5 16 41 8 0.05 0.12 0.42 0.12 5.0 1.1
1 267 51 8 0.18 0.25 0.03 0.06 2.6 1.2
4 51 76 8 1.29 0.27 0.09 0.13 0.6 0.3
3 42 79 9 1.08 0.40 0.77 0.19 0.8 0.6

Step 3, Centroid Method
6 1 17 - 0.00 - 0.00 - 13.0 -
7 1 26 - 0.00 - 0.73 - 10.4 -
2 86 33 4 0.01 0.02 0.07 0.08 7.8 1.4
5 16 41 8 0.05 0.12 0.42 0.12 5.0 1.1
1 269 51 8 0.18 0.26 0.03 0.06 2.6 1.3
4 50 76 8 1.30 0.27 0.08 0.13 0.6 0.3
3 42 79 9 1.08 0.40 0.77 0.19 0.8 0.6

Table 5 continued on next page
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Table 5. Continued

Step, Cluster Method Number of No2001 Shrink1 Wattab Perm1 Pan
and Cluster Number Members Mean SD Mean SD Mean SD Mean SD Mean SD

Step 4, Average Method
17 1 17 - 0.00 - 0.00 - 13.0 - 0.00 -
19 1 26 - 0.00 - 0.73 - 10.4 - 0.00 -
1 83 33 4 0.01 0.04 0.07 0.08 7.8 1.4 0.05 0.09
9 4 33 3 0.00 0.00 0.00 0.00 8.4 1.5 0.48 0.05

12 15 41 8 0.06 0.13 0.43 0.12 5.1 1.1 0.04 0.08
16 1 46 - 0.00 - 1.00 - 3.1 - 0.00 -
4 123 49 7 0.17 0.23 0.02 0.05 2.9 1.2 0.41 0.10
3 71 49 9 0.24 0.28 0.04 0.08 3.1 1.3 0.06 0.09

15 1 52 - 0.00 - 0.33 - 1.3 - 0.67 -
5 58 53 6 0.02 0.08 0.00 0.00 1.7 0.5 0.84 0.15
8 15 62 7 0.65 0.16 0.03 0.08 1.3 0.9 0.80 0.16
7 18 66 5 1.08 0.19 0.00 0.02 0.8 0.3 0.45 0.14

18 1 71 - 1.00 - 0.50 - 0.7 - 1.00 -
6 4 74 2 1.35 0.13 0.05 0.10 0.5 0.1 0.95 0.10

11 11 76 10 0.71 0.24 0.89 0.11 1.2 0.6 0.01 0.03
2 12 79 7 1.16 0.24 0.54 0.09 0.6 0.2 0.05 0.12

14 8 81 5 1.16 0.22 0.88 0.11 0.5 0.2 0.46 0.17
10 29 81 6 1.41 0.27 0.13 0.14 0.5 0.3 0.00 0.02
13 9 85 4 1.49 0.27 0.86 0.12 0.5 0.4 0.00 0.00

Step 4, Centroid Method
18 1 17 - 0.00 - 0.00 - 13.0 - 0.00 -
19 1 26 - 0.00 - 0.73 - 10.4 - 0.00 -
1 104 34 2 0.00 0.02 0.06 0.08 7.2 1.9 0.08 0.12

11 16 42 8 0.07 0.14 0.42 0.12 5.0 1.1 0.05 0.08
17 1 46 - 0.00 - 1.00 - 3.1 - 0.00 -
4 157 49 7 0.13 0.21 0.02 0.06 2.7 1.1 0.47 0.15
3 43 50 7 0.25 0.23 0.05 0.07 2.9 1.3 0.03 0.07
5 27 56 4 0.04 0.09 0.00 0.00 1.3 0.1 1.00 0.00
8 15 63 7 0.65 0.16 0.03 0.08 1.3 0.9 0.80 0.16
7 20 65 5 1.05 0.20 0.00 0.02 0.8 0.4 0.44 0.13

16 1 71 - 1.00 - 0.50 - 0.7 - 1.00 -
15 1 72 - 2.00 - 0.00 - 0.1 - 0.00 -
6 4 75 2 1.35 0.13 0.05 0.10 0.5 0.1 0.95 0.10

10 11 76 10 0.71 0.24 0.89 0.11 1.2 0.5 0.01 0.03
9 34 79 9 1.28 0.33 0.13 0.14 0.7 0.6 0.00 0.02
2 12 79 7 1.16 0.24 0.54 0.09 0.6 0.2 0.05 0.12

14 2 80 6 1.36 0.20 1.00 0.00 0.5 0.1 0.73 0.08
13 6 80 6 1.09 0.19 0.84 0.10 0.5 0.2 0.38 0.07
12 9 85 4 1.49 0.27 0.86 0.12 0.5 0.4 0.00 0.00
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An interesting aspect of the distribution of sections between clusters formed with the 
combination of Shrink1, Wattab, and Perm1 is that only approximately 20 percent of the 
sections were partitioned into a coarse-textured cluster (Table 5).  Thus, potentially 80% of 
the detections occurred under soil conditions where leaching with simple percolation may not 
have been the predominant pathway for movement to ground water.    
 
Step 4 
In the fourth step, no exact results were indicated between methods, but the results for 
inclusion of the Pan variable indicated a similar number of clusters formed at 19 (Appendix 
B page B-126).  The CCC values for this four-variable combination were above 3.0, and a 
peak in the Psuedo-F and valley in the Psuedo-t2 statistics were observed for both clustering 
method (Tables 4 and 5).  A descriptive comparison of the mean values for the clusters 
indicated similar cluster formation (Table 6). The shaded cells in Table 6 are clusters that 
were an exact match between methods, which tended to be clusters with lesser members.  
Although there was general agreement in the distribution of the other clusters, the exact 
partitioning of members between other clusters differed.  The Average method tended to 
provide greater discrimination between coarser-textured soils whereas the Centroid method 
tended to provide greater discrimination between the finer-textured soils. 
 
Owing to the greater degree of divergence creeping into the analysis and the increasing 
difficulty in interpretation, the usefulness of results at further steps was questioned and the 
process ceased at four variables. 
 
Profiling Algorithm 
The result from the Average clustering method was used in the CDA profiling analysis.  The 
Average method was chosen based on the original study results (Troiano et al. 1997) and on 
the increasing value observed in the CCC value with each succeeding step in the cluster 
analysis.  The CDA analysis was conducted on 12 of the 19 clusters which was 452 of the 
465 KC sections; those with 4 or fewer members were not included (Table 5).  In the 
previous analysis reported in 1997 (Troiano et al., 1997), the first 2 CVs accounted for 98% 
of the variation in the original 254 KC sections and they were sufficient in defining the 
location of the clusters.  For this revised analysis, the first 2 CVs accounted for 79% of the 
total variation and 3 CVs accounted for 95% of the total variation (Appendix 3a, CDA 
Analysis Results page B-149). With respect to the classification algorithm, a section was 
considered a member of a KC soil cluster if the Euclidean distance between the observation 
and the cluster centroid was less than or equal to the radius of either the circular or spherical 
95% population tolerance interval  (Appendix 3b, CV means for raw data page B-157). 
 
Results for CDA classification algorithm of the KC sections were compared between 
algorithms based on 2 and then 3 CVs.  For 2 CVs, 82 of the 452 sections were not classified 
into the cluster that was previously determined by the Average cluster analysis (Appendix 3c 
page B-158).  Of the 82 sections, only 3 sections did not fall within the circular population 
tolerance interval for any of the soil clusters.  The remaining 79 sections were 
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Table 6.  Descriptive comparision of cluster formation between Average and Centroid clustering 
results at the 19 cluster solution.

Average Method Centroid Method
Cluster Number of Cluster Number of 

Predominant Cluster Characteristics Designation Members Designation Members

A. Very Coarse-Textured 17 1 18 1
B. Very Coarse-Textured + Water Table 19 1 19 1
C. Coase-Textured 1 83 1 104
D. Coarse-Textured + Pan 9 4 - -
E. Medium-Coarse-Textured + Water Table 12 15 11 16
F. Medium-Coarse-Textured + Water Table 16 1 17 1
G. Medium-Coarse-Textured + Pan 4 123 4 157
H. Medium-Coarse-Textured 3 71 3 43
I. Medium-Textured + Pan + Water Table 15 1 - -
J. Medium-Textured + Pan 5 58 5 27
K. Medium-Fine-Textured + Pan 8 15 8 15
L. Medium-Fine-Textured + Pan 7 18 7 20
M. Medium-Fine-Textured + Pan + Water Table 18 1 16 1
N. Medium-Fine-Textured + Extreme Shrink1 Value - - 15 1
O. Fine-Textured + Pan 6 4 6 4
P. Fine-Textured + Water Table 11 11 11 11
Q. Fine-Textured 10 29 9 34
R. Fine-Textured + Water Table 2 12 2 12
S. Fine-Textured + Water Table + Pan 14 8 14 2
T. Fine-Textured + Water Table + Pan - - 13 6
U. Very Fine-Textured 13 9 13 12
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miss-classified between soil clusters.  For 3 CVs, 44 sections were not classified into the 
cluster that was previously determined by cluster analysis (Appendix 3d page B-167).  Of 
the 44 sections, fifteen sections did not fall within the spherical population tolerance 
interval for any of the soil clusters.  The overall error rate for misclassification decreased 
from 17.6% to 9.5% for 2 to 3 CVs, respectively, but the proportion of sections not 
classified into a soil cluster increased from 0.6 to 3.2%, respectively.  Apparently, the 3rd 
CV provided greater graphical separation of the clusters, as indicated by the reduction in 
the overall rate of misclassification.  Owing to the large number of clusters formed, some 
misclassification between clusters would be expected, especially between those located 
between the extremes of the axes.  Potential overlap of clusters is illustrated in a plot of 
the 2-dimensional circular tolerance intervals for CV1 and CV2 (Figure 4).  It is 
interesting that the percentage of sections not classified into any of the soil clusters, was 
at 3.2%, which was within the 5% spherical population tolerance interval.  
 
Comparison of CALVUL Sectional Estimates with Digitized Soil Data 
The 3-CV profiling algorithm was applied to soil data developed for Fresno and Tulare 
Counties (Figure 5).  The geographic pattern mimicked the general soil description for 
these soil survey areas.  A test of the accuracy of the sectional CALVUL estimates was 
conducted for the hardpan soil condition whereby they were compared to sectional 
estimates derived from digitized data for the Central Tulare County Soil Survey.  This 
data is one of the few digitized soil surveys now available through the NRCS.  Soil 
MUIDS with a hardpan indicator were numbered 660124, 660125, 660145, 660154, 
660155, and 660159 in the Central Tulare Survey.  For CALVUL estimates, sections 
defined as containing a hardpan were from soil clusters 4, 5, 7, and 8 in Table 5, which 
were used in the CDA profile algorithm (Table 5, Step 4 - Average method). 
 
In Figure 6, the surface areas covered by soil MUIDs with hardpan are indicated in solid 
blue upon the gray background.  The CALVUL estimates for sections containing hardpan 
soil are illustrated as the dark blue outlined squares.  Good spatial correlation is indicated 
by the overlap of these two data sets.  Some lack of correspondence between the data sets 
was measured when the sectional CALVUL hardpan values were regressed and plotted 
against the values determined from the digitized soil database (Figure 7).  Sections with 
soils containing values of the Slopeh variable > 15% were removed from this analysis in 
order to minimize bias in the CALVUL estimates, which had excluded these MUIDS.  In 
evaluating the regression, a few sections at digitized values of 0% had an indication of 
hardpan in the CALVUL estimate and conversely, at digitized values of 100 a few 
CALVUL sections had indication of soils other than hardpan.  Please note that data at 0,0 
and 1,1 co-ordinates are represented by a single point, whereas there were many points at 
these co-ordinates.  A source of error in the digitized NRCS data set was observed when 
the digitized maps were compared to the hard copy maps; some digitized polygons were 
mislabeled.  For example, a digitized section might indicate no soil with a hardpan when, 
in actuality, a small polygon was present on the hard copy.  Even with this source of 
error, a comparison of the scatter plot to the 1:1 line indicated that the CALVUL model 
values overestimated the values at the low end of the scale and underestimated the values 
at the high end.  Overestimation by the CALVUL estimates at the low end indicate a 
conservative effect where vulnerable acreage would be overestimated, an effect caused 
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by the averaging procedure used to produce sectional values.  This limitation will be 
recognized during implementation of the model results by stressing that the CALVUL 
results are estimates and that, when in doubt, they should be used in conjunction with 
either published maps or digitized data.                     

 
Application of the CALVUL Approach to California's Ground Water Protection 
Program  
The cluster assignment for any section of land only represents a potential for that land 
area to be associated with a vulnerable condition.  The next step is to link the vulnerable 
soil condition with a pathway or pathways for pesticide movement to ground water.  This 
data has been developed for two of the vulnerable soil conditions.  For the coarse soil 
condition, leaching with simple percolation from the site of application has been 
identified as the predominant pathway for movement of residues to ground water 
(Troiano et al., 1993).  Consequently, effective irrigation management has been identified 
as the method to mitigate movement of residues.  Coarse soil areas are predominantly 
located in Fresno County and they are shaded in yellow (Figure 5). 
 
Movement of pesticide residues in runoff water has been identified as a pathway for 
pesticide movement to ground water in hardpan soils.  Sections with hardpan soil are 
denoted in the various shades of blue in Figure 5.  Hardpan soils are predominant in 
Tulare County but they are also present in Fresno County, primarily along the eastern 
side of the Central Valley. Investigations conducted in this hardpan soil area have 
demonstrated widespread contamination of ground water caused by movement of winter 
rain runoff water that contains pre-emergence herbicide residue into dry wells or into 
areas with high infiltration rates (Troiano and Segawa, 1987; Braun and Hawkins, 1991). 
Runoff-prone soils have a low infiltration rate so mitigation measures are different than 
for leaching-prone soils.  Pre-emergence herbicides are usually broadcast onto the soil 
surface and rainfall is suggested as the method to incorporate the broadcast residues into 
the soil matrix.  But for runoff-prone soils, rainfall should not be a suggested method of 
incorporation.  Instead, residues should be mixed or moved into the soil prior to exposure 
to winter rainfall by some other method of incorporation such as mechanical 
incorporation.  Mechanical incorporation has been shown to greatly reduce the mass of 
simazine carried off the field in simulated-rain runoff applied to citrus row middles 
(Troiano and Garretson, 1998). 
 
A large portion of each county would be classified as vulnerable if the vulnerability 
analysis relied solely upon soil data.  Soil data, however, is not the only piece of 
geographic information that will be used to identify vulnerable areas. Based on data 
developed for the norflurazon retrospective well study, depth-to-ground water data have 
been developed as another layer used to identify areas with higher pollution potential. 
The procedure used to determine a sectional average depth of 70 feet or shallower as the 
cut-off for areas with higher potentials for ground water contamination was described in 
Troiano et al., (1999).  Sections in Fresno and Tulare Counties with spring average DGW 
less than 70 feet are indicated as the lined areas in Figure 8.  The intersection of DGW 
data overlain with the sectional data for coarse or hardpan sections provides the 
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geographical identification for sections of land with a high probability for pesticide 
movement and subsequent detection in ground water (Figure 8).  These areas will be 
designated as Ground Water Protection Areas (GWPAs) and they are areas where 
processes of movement to ground water have been identified and investigations into 
mitigation measures have been conducted.  The dark outlined squares (sections) in Figure 
8 are the KC sections where pesticides have been detected in well water.  A great 
majority of the KC sections are contained within the area described as highly vulnerable.  
The KC sections that fall out of the GWPAs will require further investigation but they 
will also be regulated by assignment into the leaching or runoff category.  
 
For comparative purposes, the 3-CV profiling algorithm was also applied to data 
developed for Glenn County (Figure 9).  Glenn County contains mostly soils in the 
medium (red) and fine-textured (green) soil clusters.  Inclusion of the indicator for a 
seasonal water table provides an interesting division between the finer-textured clay soils.  
Residues have been detected in fine-texture soil with and without a high water table 
during the winter months.  But, detection of bentazon residue in this area has been 
confined to fine-textured soil with a seasonal water table, which are sections outlined in 
gold in Figure 9.  Since bentazon detection was associated only with rice production, is 
the association with this soil condition merely due to the location of rice paddys?  
Alternatively, does the seasonal water table have an effect that exacerbates the movement 
of bentazon to ground water as compared to the area with fine-textured soil that does not 
have a seasonal water table?  These questions exemplify how the CALVUL model can 
aid in the investigation of local processes by which pesticides move to ground water.  If 
the seasonal water table soil feature provides some insight into pesticide movement in 
this area, it may also prove to be an important factor in the development of appropriate 
mitigation measures.       
 
 

Summary 
 

We are proposing to use the geographical identification of highly vulnerable areas, 
denoted as Ground Water Protection Areas (GWPAs), as the basis for proposed 
regulations where mitigation measures will be implemented to prevent further movement 
to ground water.  Currently, GWPAs are identified as sections in coarse or hardpan soil 
clusters that have sectional estimates of DGW at 70 feet or less.  As indicated in Figure 8, 
this is an area where numerous wells have been shown to contain pesticide residues.  The 
regulations will also apply in areas where residues have not yet been detected in well 
water but where soil and DGW indicate a similar potential for contamination.  The 
application of the CALVUL results will enable DPR to focus resources on further 
demonstration and implementation of mitigation measures in these areas.  In addition, the 
CALVUL model results will also be used in investigations into processes of 
contamination in other vulnerable soil conditions, such as the clay soil conditions noted 
in Glenn County (Figure 9). 
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